پیش بینی نرخ ارز با استفاده از شبکه عصبی با دو رویکرد تکنیکال و بنیادی

پایان نامه
چکیده

نرخ ارز یکی از مهم ترین پارامترهای تأثیرگذار بر سیاست های اقتصادی هر کشور می باشد. لذا پیش بینی این متغیر از اهمیّت بسزایی برخوردار است. یکی از روش های سنتی پیش بینی تجزیه و تحلیل سری زمانی است که بر دو فرض ایستایی و خطی بودن بنیان نهاده شده است. امّا در مواردی که ویژگی خطی بودن صدق نکند، در عملکرد این مدل های سنتی تردید ایجاد می شود. در این راستا شبکه های عصبی مصنوعی از قابلیت بالایی در مدل سازی فرآیندهای تصادفی و پیچیده و پیش بینی مسیرهای غیرخطی پویا برخوردار هستند. در این تحقیق، از طریق دو روش خودرگرسیون میانگین متحرک انباشته و شبکه عصبی مصنوعی با رویکرد تکنیکال به پیش بینی روند تغییرات نرخ ارز پرداخته و نتایج حاصل از دو روش را بر اساس معیارهای اندازه گیری دقّت پیش بینی مورد مقایسه قرار می گیرند. نتایج تحقیق نشان می دهد که روش شبکه عصبی مصنوعی نسبت به مدل خودگرسیون میانگین متحرک انباشته از قدرت پیش بینی بهتری برخوردار می باشد. در پایان با استفاده از شبکه عصبی دیگری با رویکرد بنیادی، عوامل موثر بر روند تغییرات نرخ ارز در کشور بررسی شده و حساسیت مدل نسبت به تغییرات متغیرهای ورودی برآورد می گردد.

منابع مشابه

بررسی جهش پولی نرخ ارز و پیش بینی آن با شبکه های عصبی مصنوعی در ایران

یکی از مباحث مهم در اقتصاد کلان، رابطه بین شوک­های پولی و نوسانات نرخ ارز در قالب تئوری جهش پولی نرخ ارز است. از آنجا که اقتصاد ایران طی سال­های بعد از انقلاب همواره در معرض گسترش پایه پولی قرار داشته است، لذا بررسی رابطه بین انبساط­های پولی و نوسانات نرخ ارز و متعاقباً نقش افزایش درجه شناورسازی نرخ ارز بر میزان افزایش این نوسان، موضوع و هدف اصلی مقاله حاضر را تشکیل می­دهد. بر این اساس در بخش او...

متن کامل

پیش بینی نرخ ارز یورو به دلار با تکنیک شبکه عصبی مصنوعی

پیش بینی نرخ ارز به عنوان یک متغیر اقتصادی مهم مورد علاقه فعالان اقتصادی است. یکی از رویکردهای متداول در پیش بینی، رویکرد تکنیکال است که از رفتار گذشته نرخ ارز برای پیش بینی استفاده می کند. البته با توجه به ساختار آشوب گونه و غیر خطی بازارهای مالی، نمی توان با یک روش مشخص و ساده که از ترکیب ابزارهای مختلف تکنیکال بدست می آید به پیش بینی بازار پرداخت و نیاز به روش های پیچیده تری می باشد. در دهه ...

متن کامل

مقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک

این مطالعه تلاشی است در جهت به­کارگیری ترکیب مدل شبکه­ی عصبی پویا و تجزیه­ی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیش­بینی متغیر مذکور می­باشد. جهت تحقق این مهم، از داده­های سری­زمانی ماهانه­ی نرخ ارز طی بازه­ی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدل­سازی­ها استفاده شده و تعداد 27 مشاهده نیز جهت شبیه­سازی و یا به بیان دی...

متن کامل

پیش بینی زمان بهینه انجام معاملات با استفاده از شبکه عصبی فازی: با رویکرد تحلیل تکنیکال

در این تحقیق به عنوان نمونه پیش بینی زمان بندی معاملات سهام 17 شرکت فعال در بورس اوراق بهادار تهران انجام شد. بدین صورت که ابتدا داده های اولیه که شامل 3 متغیر قیمت پایانی، کمترین قیمت و بیشترین قیمت سهام طی دوره زمانی 1388 تا پایان 1391 بصورت روزانه است، از سایت رسمی سازمان بورس اوراق بهادارتهران گردآوری گردید .سپس با استفاده از این داده ها و تعریف توابع مربوطه در نرم افزار excel شاخص های قدرت...

بررسی جهش پولی نرخ ارز و پیش بینی آن با شبکه های عصبی مصنوعی در ایران

یکی از مباحث مهم در اقتصاد کلان، رابطه بین شوک­های پولی و نوسانات نرخ ارز در قالب تئوری جهش پولی نرخ ارز است. از آنجا که اقتصاد ایران طی سال­های بعد از انقلاب همواره در معرض گسترش پایه پولی قرار داشته است، لذا بررسی رابطه بین انبساط­های پولی و نوسانات نرخ ارز و متعاقباً نقش افزایش درجه شناورسازی نرخ ارز بر میزان افزایش این نوسان، موضوع و هدف اصلی مقاله حاضر را تشکیل می­دهد. بر این اساس در بخش او...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم اجتماعی و اقتصادی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023